Abstract

The creep behavior of a precipitation hardenable Mg-8Zn-4Al-0.5Ca (wt.%) casting alloy was determined by using impression creep tests in the temperature range of 403–623 K and under the punching stress range of 1.68–60.4 MPa. Using a power law between the steady-state impression velocity and the punching stress, it was found that the stress exponent changes with both stress and temperature. The activation energy evaluated at the same punching stress was found to be a function of the punching stress and changed from 76.5 kJ/mol at 13.4 MPa to 45.4 kJ/mol at 46.95 MPa. However, by using a hyperbolic sine stress law between the steady-state impression velocity and the punching stress, a single activation energy was found to be 77.5 kJ/mol, which is about half of the activation energy for lattice diffusion in Mg. A single mechanism of grain boundary fluid flow was proposed to be the controlling mechanism for the creep behavior of the Mg-8Zn-4Al-0.5Ca alloy under the testing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.