Abstract

We consider convergence of Markov chains with uncertain parameters, known as imprecise Markov chains, which contain an absorbing state. We prove that under conditioning on non-absorption the imprecise conditional probabilities converge independently of the initial imprecise probability distribution if some regularity conditions are assumed. This is a generalisation of a known result from the classical theory of Markov chains by Darroch and Seneta [6].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.