Abstract

We study a two-class classification problem with a large number of features, out of which many are useless and only a few are useful, but we do not know which ones they are. The number of features is large compared with the number of training observations. Calibrating the model with 4 key parameters--the number of features, the size of the training sample, the fraction, and strength of useful features--we identify a region in parameter space where no trained classifier can reliably separate the two classes on fresh data. The complement of this region--where successful classification is possible--is also briefly discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.