Abstract

Imposing equilibrium restrictions provides substantial gains in the estimation of dynamic discrete games. Estimation algorithms imposing these restrictions have different merits and limitations. Algorithms that guarantee local convergence typically require the approximation of high‐dimensional Jacobians. Alternatively, the Nested Pseudo‐Likelihood (NPL) algorithm is a fixed‐point iterative procedure, which avoids the computation of these matrices, but—in games—may fail to converge to the consistent NPL estimator. In order to better capture the effect of iterating the NPL algorithm in finite samples, we study the asymptotic properties of this algorithm for data generating processes that are in a neighborhood of the NPL fixed‐point stability threshold. We find that there are always samples for which the algorithm fails to converge, and this introduces a selection bias. We also propose a spectral algorithm to compute the NPL estimator. This algorithm satisfies local convergence and avoids the approximation of Jacobian matrices. We present simulation evidence and an empirical application illustrating our theoretical results and the good properties of the spectral algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.