Abstract

The movement of proteins between the cytoplasm and the nucleus conventionally involves the recognition of nuclear targeting signals by members of the importin (Imp) superfamily of nuclear transporters, followed by translocation through the nuclear envelope-embedded nuclear pore complexes (NPCs). It is becoming increasingly apparent, however, that distinct alternative pathways for nuclear transport exist and are relatively abundant. This review examines several of these novel pathways, including facilitation of Imp-dependent transport by microtubule motors, and Imp-independent pathways involving either other transport molecules such as the calcium-binding protein calmodulin or through direct binding to the components of the NPC. The existence of these pathways and the fact that many proteins appear to possess separate Imp-dependent and -independent nuclear import mechanisms ensure that the cell can function under conditions in which Imp-dependent transport is inhibited and/or modulate the efficiency of Imp-dependent transport itself, according to the need.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.