Abstract

Importin-β proteins are transport proteins important in the shuttling of cargo proteins by binding to either nuclear localization signal (NLS) or nuclear export signal (NES). This study investigated the in vitro expression modulation of selected importin-βs. Specifically, this study characterized the culture behavior of mouse embryonic stem cells after knockdown of selected importin-β proteins like Cse1L, IPO7, KPNB1, RanBP16, RanBP17, or XPO4. Also, this study assessed the effects of overexpressing RanBP17 or IPO7 during cellular reprogramming of mouse embryonic fibroblasts (MEFs). Results showed that Cse1L and KPNB1 are essential for the viability of mouse embryonic stem cells since knockdown of either one of these proteins resulted in the death of mouse embryonic stem cells. Meanwhile, the growth characteristics of RanBP17, XPO4, IPO7, or RanBP16 knockdown mouse embryonic stem cells were comparable with the control. Aside from round colonies, the appearance of flat cells and spreading growth characteristics in some colonies were observed, which indicated early signs of differentiation. On the other hand, the number of colonies with overexpressed Oct4, Sox2, Klf4, cMYC (OSKM) + RanBP17, or OSKM+ IPO7 was comparable to OSKM+Flag or OSKM (controls). This suggests that RanBP17 or IPO7 has limited application in the generation of induced pluripotent stem cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.