Abstract

Acute reoviral infection has been extensively studied given the virus's propensity to target malignant cells and activate caspase-3 mediated apoptosis. Reovirus infection of malignant N1E-115 mouse neuroblastoma cells led to significant increased expression of importin-β and exportin-5 mRNAs (qRTPCR) and proteins (immunohistochemistry) which was partially blocked by small interfering LNA oligomers directed against the reoviral genome. Co-expression analysis showed that the N1E-115 cells that contained reoviral capsid protein had accumulated importin-β and exportin-5, as well as activated caspase 3. Reoviral oncolysis using a syngeneic mouse model of multiple myeloma similarly induced a significant increase in importin-β and exportin-5 proteins that were co-expressed with reoviral capsid protein and caspase-3. Apoptotic proteins (BAD, BIM, PUMA, NOXA, BAK, BAX) were increased with infection and co-localized with reoviral capsid protein. Surprisingly the anti-apoptotic MCL1 and bcl2 were also increased and co-localized with the capsid protein suggesting that it was the balance of pro-apoptotic molecules that correlated with activation of caspase-3. In summary, productive reoviral infection is strongly correlated with elevated importin-β and exportin-5 levels which may serve as biomarkers of the disease in clinical specimens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call