Abstract

The transport mechanism of the bovine heart mitochondrial ADP/ATP carrier was studied using submitochondrial particles. The modifications of the cysteine residues of the carrier by the SH-reagents eosin-5-maleimide (EMA) and N-ethylmaleimide (NEM), and disulfide bond formation between these cysteine residues catalyzed by copper-o-phenanthroline (Cu(OP)2) under various conditions were studied. In particular, the effects of the transport inhibitors carboxyatractyloside (CATR) and bongkrekic acid (BKA), and fluorescein derivatives were examined. From the results, the topology of the carrier in the membrane, dynamic translocations of the loops of the carrier, and the structure of the primary binding site of the transport substrates ADP and ATP were deduced. The loops are concluded to act as both gates in the transport and binding sites for the substrates. Based on the results, a cooperative swinging-loop model is postulated as the transport mechanism of the ADP/ATP carrier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.