Abstract

Abundant amounts of cholesteryl ester transfer protein (CETP) are found in macrophage-derived foam cells in the arterial wall, but its function in atherogenesis is unknown. To investigate the role of macrophage CETP in atherosclerosis, LDL receptor knockout mice were transplanted with bone marrow from CETP transgenic mice, which express the human CETP transgene under control of its natural promoter and major regulatory elements. CETP production by bone marrow-derived cells induced a 1.8-fold (P<0.01) increase in atherosclerotic lesion development. The increase in lesion size coincided with an increase in VLDL/LDL cholesterol and a decrease in HDL cholesterol. The cholesterol redistribution in serum was a direct effect of the substantial serum CETP activity and mass (38+/-3 nmol/mL/h and 4.8+/-0.5 microg/mL, respectively) induced by CETP production by bone marrow-derived cells. Conversely, specific disruption of CETP production by bone marrow-derived cells in CETP transgenic mice resulted in a approximately 2-fold (P<0.0001) reduction in serum CETP activity and mass, demonstrating the quantitative relevance of bone marrow-derived CETP. Finally, we show that in liver Kupffer cells, hepatic macrophages, contribute approximately 50% to the total hepatic CETP expression. In conclusion, bone marrow-derived CETP induces a proatherogenic lipoprotein profile and promotes the development of atherosclerotic lesions in LDL receptor knockout mice. Most importantly, we show for the first time that bone marrow-derived CETP is an important contributor to total serum CETP activity and mass.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.