Abstract
AbstractDifferent optical parameters for thin solid films can be computed as functions of wavelength from the optical transmission and reflection spectra. Subsequently, several models can be tested on the obtained data, in order to check their validity with respect to the materials under study. Moreover, these models offer the possibility to estimate essential physical parameters. Such models are tested within this article for the refraction index and for the real part of the complex dielectric constant, for bismuth trioxide thin films deposited on glass substrates maintained at three different temperatures. Also, the model proposed by Tauc is applied for the absorption spectrum of the same films, in order to determine the type of electronic transition and to estimate the optical energy bandgap. It will be noticed that the optical parameters vary rather significantly with changing substrate temperature, while the structure of the films, as studied by means of X‐ray diffractometry is almost insensitive to this change of deposition parameter. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.