Abstract
This paper discusses several important issues in a molecular dynamics simulation for analysing carbon nanotubes and their mechanical properties. In particular, the paper addresses the problems in selecting appropriate inter-atomic potentials, number of thermostat atoms, thermostat techniques, time and displacement steps and number of relaxation steps to reach the dynamic equilibrium. Based on these, the structural changes of armchair and zigzag nanotubes and their mechanical properties are investigated. The Young's modulus and Poisson's ratio of the armchair tube are 3.96 and 0.15 TPa, respectively, and those of the zigzag tube are 4.88 and 0.19 TPa, respectively. The best simulation technique identified in this study predicts that the ultimate tensile strain of a carbon nanotube is around 40% before atomic bond breakage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.