Abstract

Surface corrosion is considered to be a main reason for the surface pattern damages of copper coin sourced from the Qing Dynasty. In this study, micromorphology and the structural feature of the copper coins were analyzed to determine their corrosion mechanisms. The results revealed that the etching rates successively reduced with decreasing corrosion thickness, possibly because of unique macrofeatures of the surface pattern. Variable phases, bonding morphologies, and three-/two-dimensional structures of Ql-TB (Qianlong-Tongbao) coins were visibly different at the microscale, which induced disproportional stresses and microscopic cracks, facilitating an unhindered entry of oxide and hydroxyl (OH−) ions. These species resulted in the competitive interplay of self-healing and self-degradation mechanisms on the coin surfaces and formed corrosion thickness of ~9.31 μm and a mean corrosion rate of ~2.7%. This study provided an important guideline for preserving microstructures and surface patterns of historical copper coins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call