Abstract

Resistance to third-generation cephalosporins mediated by β-lactamases is an increasing problem for clinical therapeutics. A wide range of Enterobacteriaceae produce these AmpC enzymes (Bush-Jacoby-Medeiros group 1), including Enterobacter spp., Citrobacter freundii, Morganella morganii, Providencia spp., and Serratia marcescens. Resistance via this mechanism has been shown to be statistically correlated with the use of some third-generation cephalosporins, and the infections caused by these stably derepressed enzyme-producing species seem to occur most frequently in the seriously ill. More recently the genes encoding this enzyme have been documented on plasmids capable of transfer into other species such as Klebsiella pneumoniae. Fourth-generation cephalosporins, with stability and low affinity for the Amp C β-lactamases and the ability to penetrate rapidly into the periplasmic space of Gram-negative organisms, offer a viable alternative in the treatment of these infections or as empiric regimens. Furthermore, these compounds (example: cefpirome) possess greater potency against the frequently occurring Gram-positive cocci such as oxacillin-susceptible staphylococci and the streptococci (including some penicillin-resistant strains) as compared to previously used anti-pseudomonal cephalosporias, ceftazidime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.