Abstract

The generation of accurate attenuation correction (AC) maps is a basic step to allow for quantitative PET/MR imaging. However, generating MR-based AC maps is a challenge because there is no direct relationship between the PET attenuation coefficients (μ) and the intensity of the MR signal, contrary to what happens with the intensity of CT images. In fact, ignoring the bone causes a distorted and biased distribution of the calculated SUV values. To solve this problem, several MR-based AC methods have been proposed in the literature. In this paper we describe how these methods work, and the challenge they faced to translate into full body applications. Currently, in research environments, the accuracy of AC methods is no longer a limiting factor to solve in order to carry out quantitative in vivo molecular imaging studies. However, many of these methods present a series of limitations for their real implementation in the clinical practice due to insufficient clinical validation and the difficulty of their implementation in a real environment (as described in the examples of clinical applications). Thus, we need the PET/MR community to work on the standardization of the use and assessment of different AC methods. In this scenario, the opening and access by vendors to the implementation of new AC methods in their PET/MR scanners plays a crucial role.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call