Abstract

In this paper we consider the application of importance sampling in simulations of Markovian tandem networks in order to estimate the probability of rare events, such as network population overflow. We propose a heuristic methodology to obtain a good approximation to the 'optimal' state-dependent change of measure (importance sampling distribution). Extensive experimental results on 2-node tandem networks are very encouraging, yielding asymptotically efficient estimates (with bounded relative error) where no other state-independent importance sampling techniques are known to be efficient The methodology avoids the costly optimization involved in other recently proposed approaches to approximate the 'optimal' state-dependent change of measure. Moreover, the insight drawn from the heuristic promises its applicability to larger networks and more general topologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.