Abstract
Importance sampling or Markov Chain Monte Carlo sampling is required for state-of-the-art statistical analysis of population genetics data. The applicability of these sampling-based inference techniques depends crucially on the proposal distribution. In this paper, we discuss importance sampling for the infinite sites model. The infinite sites assumption is attractive because it constraints the number of possible genealogies, thereby allowing for the analysis of larger data sets. We recall the Griffiths-Tavaré and Stephens-Donnelly proposals and emphasize the relation between the latter proposal and exact sampling from the infinite alleles model. We also introduce a new proposal that takes knowledge of the ancestral state into account. The new proposal is derived from a new result on exact sampling from a single site. The methods are illustrated on simulated data sets and the data considered in Griffiths and Tavaré (1994).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Statistical Applications in Genetics and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.