Abstract
This letter deals with the use of Importance Sampling (IS) techniques and the Mean-Square (MS) error in neural network training, for applications to detection in communication systems. Topics such as modifications of the MS objective function, optimal and suboptimal IS probability density functions, and adaptive importance sampling are presented. A genetic algorithm was used for the neural network training, having considered adaptive IS techniques for improving MS error estimations in each iteration of the training. Also, some experimental results of the training process are shown in this letter. Finally, we point out that the mean-square error (estimated by importance sampling) attains quasi-optimum training in the sense of minimum error probability (or minimum misclassification error).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.