Abstract

The usual nuclear recoil energy reconstruction employed by liquid xenon dark matter search experiments relies only on the primary scintillation photon signal. Energy reconstruction based on both the photon and electron signals yields a more accurate representation of search results. For a dark matter particle of mass ${m}_{\ensuremath{\chi}}\ensuremath{\sim}10\text{ }\text{ }\mathrm{GeV}$, a nuclear recoil from a scattering event is more likely to be observed in the lower-left corner of the typical search box, rather than near the nuclear recoil calibration centroid. In this region of the search box, the actual nuclear recoil energies are smaller than the usual energy scale suggests, by about a factor of 2. Recent search results from the XENON100 experiment are discussed in light of these considerations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.