Abstract

Sinorhizobium meliloti, a legume symbiont and Brucella abortus, a phylogenetically related mammalian pathogen, both require their BacA proteins to establish chronic intracellular infections in their respective hosts. The lipid A molecules of S. meliloti and B. abortus are unusually modified with a very-long-chain fatty acid (VLCFA; C > or = 28) and we discovered that BacA is involved in this unusual modification. This observation raised the possibility that the unusual lipid A modification could be crucial for the chronic infection of both S. meliloti and B. abortus. We investigated this by constructing and characterizing S. meliloti mutants in the lpxXL and acpXL genes, which encode an acyl transferase and acyl carrier protein directly involved in the biosynthesis of VLCFA-modified lipid A. Our analysis revealed that the unusually modified lipid A is important, but not crucial, for S. meliloti chronic infection and that BacA must have an additional function, which in combination with its observed effect on the lipid A in the free-living form of S. meliloti, is essential for the chronic infection. Additionally, we discovered that in the absence of VLCFAs, S. meliloti produces novel pentaacylated lipid A species, modified with unhydroxylated fatty acids, which are important for stress resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.