Abstract
In GH4C1 cells, TRH and the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA), have been shown to activate Na+/H+ exchange, probably via stimulation of protein kinase C. In the present study, the dependence of changes in intracellular pH (pHi) on transients in the cytosolic free calcium concentration [( Ca2+]i) was investigated using BCECF and fura-2, respectively. In buffer containing 0.4 mM extracellular Ca2+, both TRH and ionomycin induced rapid cytosolic alkalinization in GH4C1 cells acid loaded with nigericin. The action of ionomycin on pHi was abolished by preincubating the cells with 100 microM amiloride or by replacing extracellular Na+ with choline+, indicating that the change in pHi was probably due to activation of Na+/H+ exchange. The actions of both TRH and ionomycin on pHi were blunted in Ca2(+)-free buffer. When acid-loaded cells were stimulated first with ionomycin, to deplete intracellular Ca2+ stores, and then incubated with TRH, the TRH-induced alkalinization was blunted; thus, an increase in [Ca2+]i is needed for full activation of Na+/H+ exchange. To study further the importance of agonist-induced changes in [Ca2+]i on the activation of Na+/H+ exchange, acid-loaded cells were incubated first with TPA, and then with either TRH or ionomycin. TPA induced a rise in pHi, which was further enhanced by TRH, but not ionomycin. The actions of both TRH and ionomycin on Na+/H+ exchange were attenuated, but not abolished, in cells pretreated with TPA for 36 h. Acidification of the cytosol with nigericin increased the resting [Ca2+]i level from 125 +/- 29 to 200 +/- 25 nM (P less than 0.01). The increase in [Ca2+]i was greatly attenuated when extracellular Ca2+ was chelated with EGTA before the addition of nigericin. Both the TRH- and ionomycin-induced increases in [Ca2+]i were blunted in acid-loaded cells. We conclude that in GH4C1 cells, a transient increase in [Ca2+]i can enhance Na+/H+ exchange and cause a rise in pHi, but that to obtain full activation of exchange, protein kinase C activity must also be stimulated. Furthermore, pHi is important in maintaining an adequate store of sequestered intracellular Ca2+ and in the release of Ca2+ from that store in response to TRH and ionomycin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.