Abstract

Advances in processing capabilities of computer clusters have allowed for the full modeling of organometallic complexes that previously would have been simplified to reduce computational cost. Increased feasibility of computational modeling offers new challenges, not only in terms of limitations of methods and theory, but attention should be paid to complexes that can exist in many conformations, as the appropriate choice of conformer may be easily overlooked. In this work a series of pincer complexes with isopropyl and cyclopentyl substituents have been chosen as examples to demonstrate the importance of conformational analysis. The complexes examined contain four isopropyl or cyclopentyl groups on phosphor atoms generating between 27 and 324 possible rotamers. The importance of conformational search in a mechanistic investigation is demonstrated with the CO2 insertion into a nickel hydride bond of POCOP iPr nickel hydride complex. Results show that the reaction energy profile can be both exergonic and endergonic depending on rotamer choice. Specifically, the POCOPiPr Ni-formato complex product of the CO2 insertion reaction had an energy difference between the lowest and highest energy rotamer as high as 16.8 kcal/mol. The significant energy differences between rotamers highlight the importance of thorough conformational analysis and should be taken into consideration when evaluating the energy profile of related reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call