Abstract

We demonstrate the importance of accounting for the complex magnetic ground state and finite temperature magnetic excitations in theoretical simulations of structural and elastic properties of transition metal alloys. Considering Fe72Cr16Ni12face centered cubic (fcc) alloy, we compare results of first-principles calculations carried out for ferromagnetic and non-magnetic states, as well as for the state with disordered local moments. We show that the latter gives much more accurate description of the elastic properties for paramagnetic alloys. We carry out a determination of the magnetic ground state for fcc Fe-Mn alloys, considering collinear, as well as non-collinear states, and show the sensitively of structural and elastic properties in this system to the detailed alignment between magnetic moments. We therefore conclude that it is essential to develop accurate models of the magnetic state for the predictive description of properties of transition metal alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.