Abstract

Since the birth of the computational hydrogen electrode approach, it is considered that activity trends of electrocatalysts in a homologous series can be quantified by the construction of volcano plots. This method aims to steer materials discovery by the identification of catalystswith an improved reaction kinetics, though evaluated by means of thermodynamic descriptors. The conventional approach for the volcano plot of the oxygen evolution reaction (OER)relies on the assumption of the mononuclear mechanism, comprising the * OH, * O, and * OOH intermediates. In the present manuscript, two new mechanistic pathways, comprising the idea of the Walden inversion in that bond-breaking and bond-making occurs simultaneously, are factored into a potential-dependent OER activity volcano plot. Surprisingly, it turns out that the Walden inversion plays an important role since the activity volcano is governed by mechanistic pathways comprising Walden steps rather than by the traditionally assumed reaction mechanisms under typical OER conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.