Abstract
The demineralized fraction (DM), lipid-free fraction (LF), nonhydrolyzable organic carbon fraction (NHC), and black carbon (BC) were isolated from five marine surface sediments, and they were characterized by elemental analysis as well as CO2 and N2 adsorption techniques, respectively. The NHC fractions were characterized using advanced solid-state 13C nuclear magnetic resonance (NMR) and x-ray photoelectron spectroscopy (XPS). Then, the sorption isotherms of phenanthrene (Phen) and nonylphenol (NP) on all of the samples were investigated by a batch technique. The CO2 micropore volumes were corrected for the outer specific surface areas (SSAs) by using the N2-SSA. Significant correlations between the micropore-filling volumes of Phen and NP and the micropore volumes suggested that the micropore-filling mechanism dominated the Phen and NP sorption. Meanwhile, the (O + N)/C atomic ratios were negatively and significantly correlated with the sorption capacities of Phen and NP, indicating that the sedimentary organic matter (SOM) polarity also played a significant role in the sorption process. In addition, a strong linear correlation was demonstrated between the aromatic C and the sorption capacity of Phen for the NHC fractions. This study demonstrates the importance of the micropores, polarity, and aromaticity on the sorption processes of Phen and NP in the sediments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.