Abstract

Activated microglial cells generate reactive oxygen species (ROS), which have detrimental effects in neuroinflammatory and neurodegenerative diseases. In the present study, we have identified a novel mechanism involved in microglial NADPH oxidase-mediated ROS production. In PMA-stimulated microglia, ROS production was substantially reduced upon inhibition of the non-selective cation channel TRPV1 with La 3+, ruthenium red, capsazepine and 5-iodo-resinferatoxin. Furthermore, sustained membrane depolarization, a hallmark of NADPH oxidase activity in phagocytes, was found to induce non-selective cation/TRPV1 channel activity in microglia. Together, our data suggest that TRPV1 channels are involved in regulating NADPH oxidase-mediated ROS generation in microglia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.