Abstract
In order to achieve a significant size reduction to get ultrasmall upconverting nanoparticles (UCNPs) following a thermal coprecipitation pathway, we identified two critical points: the UCNP precursor mixing and high-temperature heating steps. Significant differences could be observed according to the way the inorganic sodium and fluoride sources were mixed to the rare-earth oleate before the high-temperature heating step. More interestingly, accurate monitoring of the high-temperature heating step using microwave (MW) dielectric heating yielded major improvement toward ultrasmall UCNPs. Thus, hexagonal, Tm-doped sub-5-nm UCNPs with an unusual Na(Yb-Gd)F4 matrix with 53% Yb were produced, displaying satisfactory luminescence. Noticeably, MW heating was achieved in a weakly MW-absorbing oleic acid (OA)/octadecene mixture, and the influence of the OA content composition on the MW heating efficiency is discussed in this report.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.