Abstract

We present a review of our recent results on the role of the mesonic cloud in the structure of hadrons in both soft and hard kinematical regimes. We compute the pion and nucleon form factors of the scalar operator uu + dd within a meson exchange model. Our results agree with recent dispersion relation analyses near the Cheng-Dashen point but show some deviation at higher energies. In particular, we confirm the observation that the strong ππ interaction gives rise to a scalar square radius of the nucleon of 1.5 fm 2 and a 15 MeV contribution to the pion nucleon sigma term. Some aspects of the meson cloud around the nucleon for deep-inelastic lepton scattering are studied in the framework of the Sullivan formalism. We present a simple two-phase model of the nucleon. Renormalization of the valence quark distribution due to the mesonic cloud is taken into account explicitly. We study the dependence of different quantities on the cut-off parameter of the form factor, the role of different mesons in deep-inelastic scattering, and SU(2) F symmetry breaking in the nucleon sea in connection to the Gottfried Sum Rule. It is possible to obtain agreement with the CCFR data using relatively hard meson-N-N form factors. The E615 data on ( u + d)/2 − s restrict the cut-off parameter in the dipole form factor to about 1.2 GeV. For this value the cut-off parameter we get the largest violation of the Gottfried Sum Rule, about half of that observed by NMC. Mesonic models predict violation of the SU (2) symmetry in the nucleon sea which seems to be necessary to explain the violation of the Gottfried Sum Rule. Since up to now there is no consensus concerning the explanation of the NMC effect, one has to study the role the d/ u asymmetry may play in other processes. Here we study the effect of the asymmetry for the Drell-Yan processes. We find that careful analysis of the dilepton production in the p-p and p-n collisions should shed new light on the interesting problem of the asymmetry. We discuss also the role of the asymmetry in proton-nucleus Drell-Yan processes. We find that moderate asymmetries concentrated in the small- x region are not excluded by the E772 experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.