Abstract

Hydrogen isocyanide (HNC) has been proposed as an important intermediate in oxidation of hydrogen cyanide (HCN) in combustion, but details of its chemistry are still in discussion. At higher temperatures, HCN and HNC equilibrate rapidly, and being more reactive than HCN, HNC offers a fast alternative route of oxidation for cyanides. However, in previous modeling, it has been required to omit the HNC subset partly or fully in the reaction mechanisms to obtain satisfactory predictions. In the present work, we re-examine the chemistry of HNC and its role in combustion nitrogen chemistry. The HNC + O2 reaction is studied by ab initio methods and is shown to have a high barrier. Consequently, the omission of this reaction in recent modeling studies is justified. With the present knowledge of the HNC chemistry, including an accurate value of the heat of formation for HNC and improved rate constants for HNC + O2 and HNC + OH, it is possible to reconcile the modeling issues and provide a satisfactory prediction o...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.