Abstract

Methylmalonyl-CoA mutase is an adenosylcobalamin (AdoCbl)-dependent enzyme that catalyzes the rearrangement of methylmalonyl-CoA to succinyl-CoA. The crystal structure of this protein revealed that binding of the cofactor is accompanied by a significant conformational change in which dimethylbenzimidazole, the lower axial ligand to the cobalt in solution, is replaced by His-610 donated by the active site. The contribution of the lower axial base to the approximately 10(12)-fold rate acceleration of the homolytic cleavage of the upper axial cobalt-carbon bond has been the subject of intense scrutiny in the model inorganic literature. In contrast, trans ligand effects in methylmalonyl-CoA mutase and indeed the significance of the ligand replacement are poorly understood. In this study, we have used site-directed mutagenesis to create the H610A and H610N variants of methylmalonyl-CoA mutase and report that both mutations exhibit both diminished activity (5,000- and 40,000-fold, respectively) and profoundly weakened affinity for the native cofactor, AdoCbl. In contrast, binding of the truncated cofactor analog, adenosylcobinamide, lacking the nucleotide tail, is less impaired. The catalytic failure of the His-610 mutants is in marked contrast to the phenotype of the adenosylcobinamide-GDP reconstituted wild type enzyme that exhibits only a 4-fold decrease in activity, although His-610 fails to coordinate when this cofactor analog is bound. Together, these studies suggest that His-610 may: (i) play a structural role in organizing a high affinity cofactor binding site possibly via electrostatic interactions with Asp-608 and Lys-604, as suggested by the crystal structure and (ii) play a role in catalyzing the displacement of dimethylbenzimidazole thereby facilitating the conformational change that must precede cofactor docking to the mutase active site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.