Abstract
The aim of the study was to prove the importance of the binary mixture composition and spheronization speed on pellet properties. Extrudates from different binary mixtures of microcrystalline cellulose (MCC) and dicalcium phosphate dihydrate were prepared with a power-consumption-controlled extruder and spheronized at different speeds. The water content of the extrudate for the production of spherical pellets was evaluated. The pellets were characterized in terms of size, shape, porosity, mechanical properties, and disintegration. The fraction of MCC in the binary mixtures had the highest impact on the pellet properties. With an increasing fraction of MCC more water was required for successful pelletization, size and porosity of the pellets decreased, and the surface tensile stress increased. These observations were evaluated using the “sponge” and the “crystallite–gel” models for MCC. The latter led to the conception that an extrudate consists of two phases: a percolating crystallite–gel phase formed by MCC and water during extrusion and a filler phase formed by the second component of the binary mixture. This two-phase concept provides explanations for the extent of shrinking during drying and for the disintegration behavior. The spheronization speed had an influence on the size but not on porosity or surface tensile stress of the pellets. The best results were obtained at intermediate spheronization velocities of 10 and 13.4 m/sec. Fundamental properties of extrudates and pellets can be described by applying a two-phase concept of the crystallite–gel model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.