Abstract

Abstract The Ahmed body is one of the most well-investigated vehicle bodies for aerodynamic purposes. Despite its simple geometry, the flow around the body, especially at the rear, is very complex as it is dominated by a large wake with strong interaction between vortical structures. In this study, the flow around the 25 deg Ahmed body has been investigated using large eddy simulations and compared to high-resolution particle image velocimetry (PIV) measurements. Special emphasis was put on studying three commonly used sub-grid scale (SGS) models and their ability to capture vortical structures around the Ahmed body. The ability of the SGS models to capture the near-wall behavior and small-scale dissipation is crucial for capturing the correct flow field. Very good agreement between simulations and PIV measurements were seen when using the dynamic Smagorinsky-Lilly and the wall-adopting local eddy-viscosity SGS models, respectively. However, the standard Smagorinsky-Lilly model was not able to capture the flow patterns when compared to the PIV measurements due to shortcomings in the near-wall modeling in the standard Smagorinsky-Lilly model, resulting in overpredicted separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call