Abstract

The prosaposin gene encodes a 70 kDa protein. This protein might either reach the lysosomes and get processed there to four peptides, which are activators of known lysosomal enzymes, or be secreted by cells as a 70 kDa protein, recently anticipated to have several biological activities. The human prosaposin gene has a 9 bp exon (exon 8) that is alternatively spliced, thus encoding three prosaposin forms: one with an extra three amino acid residues, one with an extra two residues and a third form with no extra residues. With the aim of testing whether there is an association between the alternative splicing and the differential sorting of prosaposins, we cloned two human prosaposin cDNA forms in a T7/EMC/vaccinia virus-derived vector and expressed them in human cells. The results indicated that the prosaposin containing the three extra residues accumulated faster and in greater amounts in the medium, whereas the prosaposin with no extra residues was mainly destined for lysosomes. Point mutations created by mutagenesis in vitro in the 9 bp stretch had a diverse effect on prosaposin secretion. When supplied to cells in the medium, both prosaposins were endocytosed and reached the lysosomes, where they were processed to active saposin B and saposin C. The activities of the saposins were monitored qualitatively and quantitatively. Quantitatively, lipids were extracted from the cells, separated on TLC and measured fluorimetrically. Qualitatively, cells were detected by fluorescence microscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.