Abstract

We describe the new nanostructured Pt/Ge/Se materials prepared from the molecular units [Ge2Se6](4-) and [GeSe4](4-) and linking Pt(2+) ions in the presence of surfactant micelles. X-ray diffraction coupled with transmission electron microscopy images reveals hexagonal pore symmetry. The solvent dependence and solution speciation of these building blocks were investigated by means of multinuclear NMR spectroscopy and by fast atom bombardment (FAB) mass spectroscopy and it is shown that rapid exchange equilibrium is reached between species like [Ge4Se10](4-), [Ge2Se6](4-), and [GeSe4](4-) in both water and formamide. This results in multiple Ge/Se anions being incorporated in the mesostructured materials which is supported by Raman and IR spectroscopic data. It is likely that the presence of multiple building units both in water and formamide solutions favors the assembly of mesostructured metal chalcogenides with good pore order. Systematic variation of both surfactant headgroup and chain length modulates the optoelectronic properties of the mesostructures. The Pt/Ge/Se materials show sharp band gap transitions in the range of 1.24-1.97 eV. Finally, the materials exhibit reversible ion-exchange properties and a marked inorganic framework flexibility that enables a contraction-expansion process in response to the exchange. The Pt/Ge/Se framework possesses a very high surface area as estimated by small-angle X-ray scattering techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.