Abstract

Meadow classification studies have demonstrated the importance of water table fluctuation patterns in determining plant community composition in the western United States. However, a mechanism causing an overall increase in Poa pratensis ssp. pratensis populations and local declines in Deschampsia cespitosa populations in western montane meadows over the past century has not been defined. In order to better understand plant species interactions in these often highly grazed systems, we observed aboveground responses of Poa and Deschampsia to changes in species composition, soil moisture gradients, and clipping in the field. As well, we conducted a factorial greenhouse experiment, varying plant density, water availability, and clipping. While Poa is adapted to dry meadows and Deschampsia to wet meadows, their ranges overlap in wet conditions where soil moisture averages 50% in the early growing season. Deschampsia appears to be excluded from dry meadows where Poa is prevalent and soil moisture is closer to 30% water content in the early growing season. Our greenhouse experiment revealed that Deschampsia’s competitive ability decreases, while Poa’s increases, at soil moistures of 19%. However in more mesic conditions (50% soil moisture), each species aboveground biomass, tillering, and inflorescence weight was adherent to soil moisture conditions, and species interactions were less important. Our early growing season clipping treatments significantly reduced biomass of both grasses, but did not appear to favor one species over the other. This work points to the importance of soil water content in determining the performance of each plant species and the level of species interactions in montane meadows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.