Abstract
ABSTRACTMultilevel modeling is an important tool for analyzing large-scale assessment data. However, the standard multilevel modeling will typically give biased results for such complex survey data. This bias can be eliminated by introducing design weights which must be used carefully as they can affect the results. The aim of this paper is to examine different approaches and to give recommendations concerning handling design weights in multilevel models when analyzing large-scale assessments such as TIMSS (The Trends in International Mathematics and Science Study). To achieve the goal of the paper, we examined real data from two countries and included a simulation study. The analyses in the empirical study showed that using no weights or only level 1 weights sometimes could lead to misleading conclusions. The simulation study only showed small differences in estimation of the weighted and unweighted models when informative design weights were used. The use of unscaled or not rescaled weights however caused significant differences in some parameter estimates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.