Abstract

Saving energy, shortening processing times, maximizing thermal efficiency, and lengthening the life of industrial equipment are all possible outcomes of heating and cooling optimization. In recent years, there has been a rise in interest regarding the development of high-efficiency thermal systems for the purpose of enhancing heat and mass movement. This study presents an investigation on the non-linear flow of a hybrid nanofluid comprising of Multi Walled Carbon Nanotubes (MWCNTs) and Single Walled Carbon Nanotubes (SWCNTs) over an extended surface, considering the effects of Magnetohydrodynamics (MHD) and porosity, with engine oil serving as the base fluid. Also, radiation and Darcy-Forchheimer flow is considered. The problem of regulating flow is transformed into ordinary differential equations (ODEs) by employing similarity variables. The Midrich Scheme is then used to implement a numerical solution to these equations in the program Maple. Through visual representations of fluid velocities and temperatures, the inquiry addresses several important factors, including magnetic parameters, porosity parameters, radiation parameters, Eckert numbers, inertia coefficients, and Biot numbers. The research has important implications in a number of real-world contexts. Due to its exceptional characteristics, such as reduced erosion, reduced compression drops difficulties, and greatly increased heat transfer rates, hybrid nanofluids are frequently used in heat exchangers. For instance, various cooling devices such as electromagnetic cooling systems, as well as heat exchangers including condensers, boilers, chillers, air conditioners, evaporators, coil preheaters, and radiators. Furthermore, it has the potential to be employed in pharmaceutical businesses and the field of biomedical nanoscience.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.