Abstract

We investigated the relationships of two potential intracellular signaling pathways, protein kinase C (PKC) and phosphatidylinositol 3-kinases (PI3Ks), to ethanol-induced contractions in cerebral arteries. Ethanol (20-200 mM) induces concentration-dependent constriction in isolated canine basilar arteries that is inhibited in a concentration-dependent manner by pretreatment of these vessels with 10(-9)-10(-3) M Gö-6976 (an antagonist selective for PKC-alpha and PKC-betaI), 10(-10)-10(-4) M bisindolylmaleimide I (a specific antagonist of PKC), and 10(-10)-10(-4) M wortmannin or 10(-8)-10(-2) M LY-294002 (selective antagonists of PI3Ks). Ethanol-induced increases in intracellular Ca(2+) concentration (from approximately 100 to approximately 500 nM) in canine basilar smooth muscle cells are also suppressed markedly (approximately 20-70%) in the presence of a similar concentration range of Gö-6976, bisindolymaleimide I, wortmannin, or LY-294002. This study suggests that activation of PKC isoforms and PI3Ks appears to be an important signaling pathway in ethanol-induced vasoconstriction of cerebral blood vessels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call