Abstract

The flux of carbon and nutrients through aquatic systems is largely dependent upon interactions between autotrophic and heterotrophic processes. As a means of assessing the relative importance of autotrophy and heterotrophy in large rivers, we compared phytoplankton production, heterotrophic bacterial production and community respiration in three regulated rivers of the Midwestern USA. Samples were collected monthly (March to December 1999) from impoundments of the Ohio (McAlpine Pool), Cumberland (Lake Barkley), and Tennessee (Kentucky Lake) Rivers. Bacterial production was tightly coupled to phytoplankton production at each site (r 2 = 0.63–0.85). Ratios of phytoplankton production to bacterial production ranged from R) were observed only in the Tennessee and Cumberland Rivers during seasonal (April–July) spikes in primary production. We estimate that 3, 6, and 20% of annual bacterial carbon requirements were met by exudates from in situ phytoplankton in the Ohio River, Tennessee River, and Cumberland River, respectively. Our findings indicate that heterotrophic bacteria were largely dependant upon allochthonous carbon. Autochthonous sources provided supplemental organic matter (up to 40% of bacterial carbon demand) during summer low flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call