Abstract

Robot-to-robot learning, a specific case of social learning in robotics, enables multiple robots to share learned skills while completing a task. The literature offers various statements of its benefits. Robots using this type of social learning can reach a higher performance, an increased learning speed, or both, compared to robots using individual learning only. No general explanation has been advanced for the difference in observations, which make the results highly dependent on the particular system and parameter setting. In this paper, we perform a detailed analysis into the effects of robot-to-robot learning. As a result, we show that this type of social learning can reduce the sensitivity of the learning process to the choice of parameters in two ways. First, robot-to-robot learning can reduce the number of bad performing individuals in the population. Second, robot-to-robot learning can increase the chance of having a successful run, where success is defined as the presence of a high performing individual. Additionally, we show that robot-to-robot learning results in an increased learning speed for almost all parameter settings. Our results indicate that robot-to-robot learning is a powerful mechanism which leads to benefits in both performance and learning speed.

Highlights

  • The widely used definition of social learning reflects animal behavior: social learning is learning through observation of conspecifics

  • The benefits of robot-to-robot learning were measured in three ways: (1) the success rate, which is the percentage of runs that have a good controller in the final generation (2) the population failure, which is the median of the percentage of bad individuals in the final generation and (3) the learning speed, which is the numerical integral of the median performance over time

  • Existing literature in robotto-robot learning typically compares individual learning with robot-to-robot learning for only one parameter setting

Read more

Summary

Introduction

The widely used definition of social learning reflects animal behavior: social learning is learning through observation of conspecifics. Considering humans the definition can be extended: social learning is learning through observation of conspecifics or transferring knowledge through language. The ability to use language offers a new method, a second tool in the toolbox of social learning. If robots are concerned social learning is learning through observation of conspecifics or transferring knowledge through language or direct exchange of (parts of) controllers. In the current paper we focus on the third option for robots, the direct exchange of controllers, that is a special case of social learning that is only available for robots. To emphasize this we usethe term robot-to-robot learning

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.