Abstract
The impact of the differences in the oceanic heat uptake and storage on the transient response to changes in radiative forcing is investigated using two newly developed coupled atmosphere‐ocean models. In spite of its larger equilibrium climate sensitivity, one model (CM2.1) has smaller transient globally averaged surface air temperature (SAT) response than is found in the second model (CM2.0). The differences in the SAT response become larger as radiative forcing increases and the time scales become longer. The smaller transient SAT response in CM2.1 is due to its larger oceanic heat uptake. The heat storage differences between the two models also increase with time and larger rates of radiative forcing. The larger oceanic heat uptake in CM2.1 can be traced to differences in the Southern Ocean heat uptake and is related to a more realistic Southern Ocean simulation in the control integration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.