Abstract
We present an analysis of high energy heavy ion collisions at intermediate impact parameters, using a two-dimensional fluid-dynamical model including shear and bulk viscosity, heat conduction, a realistic treatment of the nuclear binding, and an analysis of the final thermal emission of free nucleons. We find large collective momentum transfer to projectile and target residues (the highly inelastic bounce-off effect) and explosion of the hot compressed shock zones formed during the impact. As the calculated azimuthal dependence of energy spectra and angular distributions of emitted nucleons depends strongly on the coefficients of viscosity and thermal conductivity, future exclusive measurements may allow for an experimental determination of these transport coefficients. The importance of $4\ensuremath{\pi}$ measurements with full azimuthal information is pointed out.[NUCLEAR REACTIONS $^{20}\mathrm{Ne}$ + $^{238}\mathrm{U}$, ${E}_{1\mathrm{ab}}=400$ MeV/nucleon fluid dynamics, viscosity, heat conduction, cross sections.]
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.