Abstract
Noncovalent interactions involving sulfur atoms play essential roles in protein structure and function by significantly contributing to protein stability, folding, and biological activity. Sulfur is a highly polarizable atom that can participate in many types of noncovalent interactions including hydrogen bonding, sulfur-π interactions, and S-lone pair interactions, but the impact of these sulfur-based interactions on molecular recognition and drug design is still often underappreciated. Here, we examine, using quantum chemical calculations, the roles of sulfur-based noncovalent interactions in complex naturally occurring molecules representative of thiopeptide antibiotics: glycothiohexide α and its close structural analogue nocathiacin I. While donor-acceptor orbital interactions make only very small contributions, electrostatic and dispersion contributions are predicted to be significant in many cases. In pursuit of understanding the magnitudes and nature of these noncovalent interactions, we made potential structural modifications that could significantly expand the chemical space of effective thiopeptide antibiotics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.