Abstract

Minor histocompatibility antigens with expression restricted to the recipient hematopoietic compartment represent prospective immunological targets for graft-versus-leukemia therapy. It remains unclear, however, whether donor T cell recognition of these hematopoietically derived minor histocompatibility antigens will induce significant graft-versus-host disease (GVHD). Using established bone marrow irradiation chimeras across the multiple minor histocompatibility antigen-disparate, C57BL/6-->BALB.B combination, we studied the occurrence of lethal GVHD mediated by CD4+ T cells in recipient mice expressing only hematopoietically derived alloantigens. Even substantial dosages of donor C57BL/6 CD4+ T cells were unable to elicit lethal GVHD when transplanted into [BALB.B-->C57BL/6] chimeras. Instead, chimeric mice displayed transient cachexia with reduced target-tissue injury over time, reflecting an early, limited, graft-versus-host response. On the other hand, the importance of minor histocompatibility antigens derived from nonhematopoietic tissues was demonstrated by the finding that [C57BL/6-->BALB.B] chimeric mice succumbed to C57BL/6 CD4+ T cell-mediated GVHD. These data suggest that severe acute CD4+ T cell-mediated GVHD across this minor histocompatibility antigen barrier depends on the expression of nonhematopoietically rather than hematopoietically derived alloantigens for maximal target-tissue infiltration and injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.