Abstract

Abstract High- CO 2 gas fields serve as important analogues for understanding various processes related to CO 2 injection and storage. The chemical signatures, both within the fluids and the solid phases, are especially useful for elucidating preferred gas migration pathways and also for assessing the relative importance of mineral precipitation and/or solution trapping efficiency. In this paper, we present a high resolution study focused on the Gorgon gas field and associated Rankin Trend gases on Australia’s North West Shelf. The gas data we present here display clear trends for CO 2 abundance (mole %) and δ 13 C CO 2 both areally and vertically. The strong spatial variation of CO 2 content and δ 13 C and the interrelationship between the two suggests that processes were active to alter the two in tandem. We propose that these variations were driven by the precipitation of a carbonate phase, namely siderite, which is observed as a common late stage mineral. This conclusion is based on Rayleigh distillation modeling together with bulk rock isotopic analyses of core, which indicates that the late stage carbonate cements are related to the CO 2 in the natural gases. The results suggest that a certain amount of CO 2 may be sequestered in mineral form over short migration distances of the plume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.