Abstract

Activation of the MEK/ERK/MAP kinase signaling pathway promotes the proliferation and survival of hematopoietic cells. The kinases MEK-1, MEK-2, ERK-1/MAPK and ERK-2/MAPK are activated by phosphorylation at specific sites, and these events can be monitored using phospho-specific antibodies. In this report we examined the importance of the MEK/ERK/MAP kinase pathway in the monocytic and granulocytic differentiation of myeloid cell lines. Induction of monocytic differentiation in HL-60 cells by treatment with phorbol 12-myristate 13-acetate (PMA) led to rapid and sustained activation of MEK-1/-2, ERK-1/MAPK and ERK-2/MAPK, while induction of granulocytic differentiation by retinoic acid (RA) caused similar activation of MEK-1/-2 and ERK-2/MAPK, but not ERK-1/MAPK. The total levels of these kinases were not affected during the course of differentiation along either pathway. Pretreatment of cells with 5 microM of the MEK-1/-2-specific inhibitor U0126 abrogated PMA- or RA-induced activation of ERK-1/MAPK and ERK-2/MAPK. Importantly, pretreatment of HL-60 cells with U0126 was found to potently inhibit both monocytic and granulocytic differentiation, as assessed by cytochemical staining for non-specific esterase or nitroblue tetrazolium reduction, flow cytometric analysis of myeloid surface markers, and immunoblotting for the cell cycle inhibitor p21 WAF1/Cip1. Similar results were seen in U937 cells, where U0126 inhibited PMA-induced monocytic differentiation, and in 32D cells, where G-CSF-induced granulocytic differentiation was inhibited by U0126 pretreatment. Additional experiments revealed that inhibition of MEK-1/-2 in HL-60 cells resulted in nearly complete inhibition of differentiation-induced cell death during monocytic differentiation. By contrast, U0126 only partially inhibited cell death resulting from granulocytic differentiation. Taken together, our findings demonstrate that the MEK/ERK/MAP kinase signaling pathway is activated, and plays a critical role, during both monocytic and granulocytic differentiation of myeloid cell lines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.