Abstract

Most of the liquid-state theories, including glass-transition theories, are constructed on the basis of two-body density correlations. However, we have recently shown that many-body correlations, in particular, bond orientational correlations, play a key role in both the glass transition and the crystallization transition. Here we show, with numerical simulations of supercooled polydisperse hard spheres systems, that the length-scale associated with any two-point spatial correlation function does not increase toward the glass transition. A growing length-scale is instead revealed by considering many-body correlation functions, such as correlators of orientational order, which follows the length-scale of the dynamic heterogeneities. Despite the growing of crystal-like bond orientational order, we reveal that the stability against crystallization with increasing polydispersity is due to an increasing population of icosahedral arrangements of particles. Our results suggest that, for this type of systems, many-body correlations are a manifestation of the link between the vitrification and the crystallization phenomena. Whether a system is vitrified or crystallized can be controlled by the degree of frustration against crystallization, polydispersity in this case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.