Abstract

Iron imbalance has been implicated in oxidative injury associated with many brain diseases. The present study investigated the importance of iron location in hydroxyl radical (·OH) generation and the link between ·OH production evaluated by the salicylate method and lipid peroxidation monitored by thiobarbituric acid-reactive substances assay. Brain slices were exposed to increasing doses (2, 10 and 50 μM) of Fe(III) that was complexed either to a lipophilic (8-hydroxyquinoline, HQ) or to a hydrophilic (ammoniacal citrate) ligand. Both iron complexes resulted in an increased salicylate hydroxylation and lipid peroxidation, these effects being significantly more potent in presence of Fe(III)-HQ. Salicylate hydroxylation was linearly correlated to the intensity of TBARS formation but the slope of the curve was found to be higher with Fe(III)-HQ. The present results demonstrate that 1) cell-associated reactive iron is more prone than extracellular iron to induce ·OH generation, 2) the level of lipid peroxidation depending on the site of ·OH production, cannot be used as an index of the level of total ·OH formation, 3) the salicylate method is a convenient method to detect ·OH formed intracellularly, at least in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.