Abstract
The quantitative structure-activity relationship (QSAR) models for predicting antioxidative capacity of 21 structurally similar natural and synthetic phenolic antioxidants was considered. The one-, two- and three-descriptor QSAR models were developed. For this purpose the literature data on the vitamin C equivalent antioxidative capacity (VCEAC) values were used as experimental descriptor of antioxidative capacity. Some thermodynamic and aromaticity properties, as well as the natural bond analysis (NBO) based quantities aimed at measuring the strength of intramolecular hydrogen bonds, were used as independent variables. It was examined whether a combination of these variables can yield a mathematical function that is in good correlation with the VCEAC values. It was shown that a combination of a certain thermodynamic descriptor (related to the single proton loss electron transfer mechanism) with the NBO-based quantities results in several two-descriptor models with the correlation coefficient greater than 0.950. Thus, a significant influence of internal hydrogen bonds on the antioxidative capacity of the studied molecules was confirmed. The best correlation with the VCEAC values was achieved within a three-descriptor QSAR model. This model was obtained by including a magnetic aromaticity index. It was found that aromaticity has only secondary effects on the antioxidative capacity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.