Abstract

AbstractNatural gas hydrates are considered to be a strategic unconventional hydrocarbon resource in the Indian energy sector, and thermal stimulation is considered as one of the methods for producing methane from gas hydrate-bearing sediments. This paper discusses the importance of this abundantly available blue economic resource and analyzes the efficiency of methane gas production by circulating hot water in a horizontal well in the fine-grained, clay-rich natural gas hydrate reservoir in the Krishna-Godavari basin of India. Analysis is done using the electrothermal finite element analysis software MagNet-ThermNet and gas hydrate reservoir modeling software TOUGH+HYDRATE with reservoir petrophysical properties as inputs. Energy balance studies indicate that, in the 90% hydrate-saturated reservoir, the theoretical energy conversion ratio is 1:4.9, and for saturations below 20%, the ratio is <1. It is identified that a water flow of 0.2 m3/h at 270°C is required for every 1 m2 of wellhead surface area to dissociate gas hydrates up to a distance of 2.6 m from the well bore within 36 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.