Abstract

The sepsis caused by Vibrio vulnificus is characterized by an average incubation period of 26 h and a high mortality rate exceeding 50%. The fast growth and dissemination of V. vulnificus in vivo lead to poor clinical outcomes in patients. Therefore, elucidation of the proliferation mechanisms of this organism in vivo may lead to the development of an effective therapeutic strategy. In this study, we focused on the low oxygen concentration in the intestinal milieu because of its drastic difference from that in air. Fumarate and nitrate reduction regulatory protein (FNR) is known to be a global transcriptional regulator for adaptation to anaerobic conditions in various bacteria. We generated a strain of V. vulnificus in which the fnr gene was replaced with an erythromycin resistance gene (fnr::erm mutant). When the fnr::erm mutant was tested in a growth competition assay against the wild-type (WT) in vivo, the competitive index of fnr::erm mutant to WT in the intestinal loop and liver was 0.378 ± 0.192 (mean ± SD) and 0.243 ± 0.123, respectively. These data suggested that FNR is important for the proliferation of V. vulnificus in the intestine to achieve a critical mass to be able to invade the systemic circulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.